N ov 2 00 5 Derived equivalence classification of symmetric algebras of domestic type
نویسنده
چکیده
We give a complete derived equivalence classification of all symmetric algebras of domestic representation type over an algebraically closed field. This completes previous work by R. Bocian and the authors, where in this paper we solve the crucial problem of distinguishing standard and nonstandard algebras up to derived equivalence. Our main tool are generalized Reynolds ideals, introduced by B.Külshammer for symmetric algebras in positive characteristic, and recently shown by A. Zimmermann to be invariants under derived equivalences.
منابع مشابه
Ju l 2 00 5 Derived Equivalence Classification of Nonstandard Selfinjective Algebras of Domestic Type
We give a complete derived equivalence classification of all nonstandard representation-infinite domestic selfinjective algebras over an algebraically closed field. As a consequence, a complete stable equivalence classification of these algebras is obtained.
متن کاملON THE USE OF KULSHAMMER TYPE INVARIANTS IN REPRESENTATION THEORY
Since 2005 a new powerful invariant of an algebra has emerged using the earlier work of Horvath, Hethelyi, Kulshammer and Murray. The authors studied Morita invariance of a sequence of ideals of the center of a nite dimensional algebra over a eld of nite characteristic. It was shown that the sequence of ideals is actually a derived invariant, and most recently a slightly modied version o...
متن کاملN ov 2 00 3 Symmetric Coalgebras
We construct a structure of a ring with local units on a co-Frobenius coalgebra. We study a special class of co-Frobenius coalgebras whose objects we call symmetric coalgebras. We prove that any semiperfect coalgebra can be embedded in a symmetric coalgebra. A dual version of Brauer's equivalence theorem is presented, allowing a characterization of symmetric coalgebras by comparing certain func...
متن کاملDerived equivalence of symmetric special biserial algebras
We introduce Brauer complex of symmetric SB-algebra, and reformulate in terms of Brauer complex the so far known invariants of stable and derived equivalence of symmetric SB-algebras. In particular, the genus of Brauer complex turns out to be invariant under derived equivalence. We study transformations of Brauer complexes which preserve class of derived equivalence. Additionally, we establish ...
متن کاملGeneralized Reynolds Ideals and Derived Equivalences for Algebras of Dihedral and Semidihedral Type
Generalized Reynolds ideals are ideals of the center of a symmetric algebra over a field of positive characteristic. They have been shown by the second author to be invariant under derived equivalences. In this paper we determine the generalized Reynolds ideals of algebras of dihedral and semidihedral type (as defined by Erdmann), in characteristic 2. In this way we solve some open problems abo...
متن کامل